Qt Slot Derived Class

admin  4/12/2022
22 Comments

The main interface to PythonQt is the PythonQt singleton. PythonQt needs to be initialized via PythonQt::init() once. Afterwards you communicate with the singleton via PythonQt::self(). PythonQt offers a complete Qt binding, which needs to be enabled via PythonQt_QtAll::init().

  1. Qt No Such Slot In Derived Class
  2. Qt Slot Derived Class C
  3. Qt Slot Derived Classic
  4. Qt Slot Derived Classes

The following table shows the mapping between Python and Qt objects:

Without QWidget really having this method. This allows to easily make normal methods of Qt classes callable by forwarding them with such decorator slots or to make CPP classes (which are not derived from QObject) callable from Python. This is a list of all Qt 5 classes. The following pages contain different API listings in different categories: All Functions; All Namespaces; All Classes by Module; Obsolete Classes; New Classes and Functions in Qt 5.15; For more reference pages including QML types, visit Qt Reference Pages. Signals and slots are loosely coupled: A class which emits a signal neither knows nor cares which slots receive the signal. Qt's signals and slots mechanism ensures that if you connect a signal to a slot, the slot will be called with the signal's parameters at the right time. Signals and slots can take any number of arguments of any type. QDBusAbstractAdaptor uses the standard QObject mechanism of signals, slots and properties to determine what signals, methods and properties to export to the bus. Any signal emitted by QDBusAbstractAdaptor-derived classes will be automatically be relayed through any D-Bus connections the object is registered on. If I instantiate a new instance of the derived class.aTestslot seems to be populated in the method because I can print it out, viz An object of class 'OPAppt' Slot 'ClinicName': 1 'Unknown' Slot 'EventName': 1 'An Event'.

Qt/C++Python
boolbool
doublefloat
floatfloat
char/uchar,int/uint,short,ushort,QCharinteger
longinteger
ulong,longlong,ulonglonglong
QStringunicode string
QByteArrayQByteArray wrapper (1)
char*str
QStringListtuple of unicode strings
QVariantListtuple of objects
QVariantMapdict of objects
QVariantdepends on type (2)
QSize, QRect and all other standard Qt QVariantsvariant wrapper that supports complete API of the respective Qt classes
OwnRegisteredMetaTypeC++ wrapper, optionally with additional information/wrapping provided by registerCPPClass()
QList<AnyObject*>converts to a list of CPP wrappers
QVector<AnyObject*>converts to a list of CPP wrappers
EnumTypeEnum wrapper derived from python integer
QObject (and derived classes)QObject wrapper
C++ objectCPP wrapper, either wrapped via PythonQtCppWrapperFactory or just decorated with decorators
PyObjectPyObject (3)
  1. The Python 'bytes' type will automatically be converted to QByteArray where required. For converting a QByteArray to 'bytes' use the .data() method.
  2. QVariants are mapped recursively as given above, e.g. a dictionary can contain lists of dictionaries of doubles.
  3. PyObject is passed as direct pointer, which allows to pass/return any Python object directly to/from a Qt slot that uses PyObject* as its argument/return value.

All Qt QVariant types are implemented, PythonQt supports the complete Qt API for these objects.

All classes derived from QObject are automatically wrapped with a python wrapper class when they become visible to the Python interpreter. This can happen via

  • the PythonQt::addObject() method
  • when a Qt slot returns a QObject derived object to python
  • when a Qt signal contains a QObject and is connected to a python function

It is important that you call PythonQt::registerClass() for any QObject derived class that may become visible to Python, except when you add it via PythonQt::addObject(). This will register the complete parent hierachy of the registered class, so that when you register e.g. a QPushButton, QWidget will be registered as well (and all intermediate parents).

From Python, you can talk to the returned QObjects in a natural way by calling their slots and receiving the return values. You can also read/write all properties of the objects as if they where normal python properties.

In addition to this, the wrapped objects support

  • className() - returns a string that reprents the classname of the QObject
  • help() - shows all properties, slots, enums, decorator slots and constructors of the object, in a printable form
  • delete() - deletes the object (use with care, especially if you passed the ownership to C++)
  • connect(signal, function) - connect the signal of the given object to a python function
  • connect(signal, qobject, slot) - connect the signal of the given object to a slot of another QObject
  • disconnect(signal, function) - disconnect the signal of the given object from a python function
  • disconnect(signal, qobject, slot) - disconnect the signal of the given object from a slot of another QObject
  • children() - returns the children of the object
  • setParent(QObject) - set the parent
  • QObject* parent() - get the parent

The below example shows how to connect signals in Python:

Qt No Such Slot In Derived Class

def someFunction(flag):
# button1 is a QPushButton that has been added to Python via addObject()
# connect the clicked signal to a python function:

You can create dedicated wrapper QObjects for any C++ class. This is done by deriving from PythonQtCppWrapperFactory and adding your factory via addWrapperFactory(). Whenever PythonQt encounters a CPP pointer (e.g. on a slot or signal) and it does not known it as a QObject derived class, it will create a generic CPP wrapper. So even unknown C++ objects can be passed through Python. If the wrapper factory supports the CPP class, a QObject wrapper will be created for each instance that enters Python. An alternative to a complete wrapper via the wrapper factory are decorators, see Decorator slots

For each known C++ class, PythonQt provides a Python class. These classes are visible inside of the 'PythonQt' python module or in subpackages if a package is given when the class is registered.

A Meta class supports:

  • access to all declared enum values
  • constructors
  • static methods
  • unbound non-static methods
  • help() and className()

From within Python, you can import the module 'PythonQt' to access these classes and the Qt namespace.

print QtCore.Qt.AlignLeft
# constructors
b = QtCore.QFont()
# static method
Qt no such slot in derived class
QtCore.QFont.UltraCondensed
Slot

PythonQt introduces a new generic approach to extend any wrapped QObject or CPP object with

  • constructors
  • destructors (for CPP objects)
  • additional slots
  • static slots (callable on both the Meta object and the instances)

The idea behind decorators is that we wanted to make it as easy as possible to extend wrapped objects. Since we already have an implementation for invoking any Qt Slot from Python, it looked promising to use this approach for the extension of wrapped objects as well. This avoids that the PythonQt user needs to care about how Python arguments are mapped from/to Qt when he wants to create static methods, constructors and additional member functions.

The basic idea about decorators is to create a QObject derived class that implements slots which take one of the above roles (e.g. constructor, destructor etc.) via a naming convention. These slots are then assigned to other classes via the naming convention.

  • SomeClassName* new_SomeClassName(...) - defines a constructor for 'SomeClassName' that returns a new object of type SomeClassName (where SomeClassName can be any CPP class, not just QObject classes)
  • void delete_SomeClassName(SomeClassName* o) - defines a destructor, which should delete the passed in object o
  • anything static_SomeClassName_someMethodName(...) - defines a static method that is callable on instances and the meta class
  • anything someMethodName(SomeClassName* o, ...) - defines a slot that will be available on SomeClassName instances (and derived instances). When such a slot is called the first argument is the pointer to the instance and the rest of the arguments can be used to make a call on the instance.

The below example shows all kinds of decorators in action:

class YourCPPObject {
YourCPPObject(int arg1, float arg2) { a = arg1; b = arg2; }
float doSomething(int arg1) { return arg1*a*b; };
private:
int a;
};
// an example decorator
{
// add a constructor to QSize that takes a QPoint
QSize* new_QSize(const QPoint& p) { returnnew QSize(p.x(), p.y()); }
// add a constructor for QPushButton that takes a text and a parent widget
QPushButton* new_QPushButton(const QString& text, QWidget* parent=NULL) { returnnew QPushButton(text, parent); }
// add a constructor for a CPP object
YourCPPObject* new_YourCPPObject(int arg1, float arg2) { returnnew YourCPPObject(arg1, arg2); }
// add a destructor for a CPP object
void delete_YourCPPObject(YourCPPObject* obj) { delete obj; }
// add a static method to QWidget
QWidget* static_QWidget_mouseGrabber() { return QWidget::mouseGrabber(); }
// add an additional slot to QWidget (make move() callable, which is not declared as a slot in QWidget)
void move(QWidget* w, const QPoint& p) { w->move(p); }
// add an additional slot to QWidget, overloading the above move method
void move(QWidget* w, int x, int y) { w->move(x,y); }
Qt Slot Derived Class
// add a method to your own CPP object

Qt Slot Derived Class C

int doSomething(YourCPPObject* obj, int arg1) { return obj->doSomething(arg1); }
Qt Slot Derived Class

Qt Slot Derived Classic

PythonQt::self()->addDecorators(new ExampleDecorator());
PythonQt::self()->registerCPPClass('YourCPPObject');

After you have registered an instance of the above ExampleDecorator, you can do the following from Python (all these calls are mapped to the above decorator slots):

size = QtCore.QSize(QPoint(1,2));
# call our new QPushButton constructor
button.move(QPoint(0,0))
# call the move slot (overload2)
grabber = QtGui.QWidget.mouseWrapper();
# create a CPP object via constructor
print yourCpp.doSomething(1);

Qt Slot Derived Classes

# destructor will be called:

In PythonQt, each wrapped C++ object is either owned by Python or C++. When an object is created via a Python constructor, it is owned by Python by default. When an object is returned from a C++ API (e.g. a slot), it is owned by C++ by default. Since the Qt API contains various APIs that pass the ownership from/to other C++ objects, PythonQt needs to keep track of such API calls. This is archieved by annotating arguments and return values in wrapper slots with magic templates:

These annotation templates work for since C++ pointer types. In addition to that, they work for QList<AnyObject*>, to pass the ownership for each object in the list.

Examples:

PythonQtPassOwnershipToPython<QGraphicsItem*> createNewItemOwnedByPython();
void addItemToCPP(PythonQtPassOwnershipToPython<QGraphicsItem*> item);
void addItemToCPP(PythonQtPassOwnershipToPython<QList<QGraphicsItem*> > items);
void addItemParent(QGraphicsItem* wrappedObject, PythonQtNewOwnerOfThis<QGraphicsItem*> parent);

This is the sequel of my previous article explaining the implementation details of the signals and slots.In the Part 1, we have seenthe general principle and how it works with the old syntax.In this blog post, we will see the implementation details behind thenew function pointerbased syntax in Qt5.

New Syntax in Qt5

The new syntax looks like this:

Why the new syntax?

I already explained the advantages of the new syntax in adedicated blog entry.To summarize, the new syntax allows compile-time checking of the signals and slots. It also allowsautomatic conversion of the arguments if they do not have the same types.As a bonus, it enables the support for lambda expressions.

New overloads

There was only a few changes required to make that possible.
The main idea is to have new overloads to QObject::connect which take the pointersto functions as arguments instead of char*

There are three new static overloads of QObject::connect: (not actual code)

The first one is the one that is much closer to the old syntax: you connect a signal from the senderto a slot in a receiver object.The two other overloads are connecting a signal to a static function or a functor object withouta receiver.

They are very similar and we will only analyze the first one in this article.

Pointer to Member Functions

Before continuing my explanation, I would like to open a parenthesis totalk a bit about pointers to member functions.

Here is a simple sample code that declares a pointer to member function and calls it.

Pointers to member and pointers to member functions are usually part of the subset of C++ that is not much used and thus lesser known.
The good news is that you still do not really need to know much about them to use Qt and its new syntax. All you need to remember is to put the & before the name of the signal in your connect call. But you will not need to cope with the ::*, .* or ->* cryptic operators.

These cryptic operators allow you to declare a pointer to a member or access it.The type of such pointers includes the return type, the class which owns the member, the types of each argumentand the const-ness of the function.

You cannot really convert pointer to member functions to anything and in particular not tovoid* because they have a different sizeof.
If the function varies slightly in signature, you cannot convert from one to the other.For example, even converting from void (MyClass::*)(int) const tovoid (MyClass::*)(int) is not allowed.(You could do it with reinterpret_cast; but that would be an undefined behaviour if you callthem, according to the standard)

Pointer to member functions are not just like normal function pointers.A normal function pointer is just a normal pointer the address where thecode of that function lies.But pointer to member function need to store more information:member functions can be virtual and there is also an offset to apply to thehidden this in case of multiple inheritance.
sizeof of a pointer to a member function can evenvary depending of the class.This is why we need to take special care when manipulating them.

Type Traits: QtPrivate::FunctionPointer

Let me introduce you to the QtPrivate::FunctionPointer type trait.
A trait is basically a helper class that gives meta data about a given type.Another example of trait in Qt isQTypeInfo.

What we will need to know in order to implement the new syntax is information about a function pointer.

The template<typename T> struct FunctionPointer will give us informationabout T via its member.

  • ArgumentCount: An integer representing the number of arguments of the function.
  • Object: Exists only for pointer to member function. It is a typedef to the class of which the function is a member.
  • Arguments: Represents the list of argument. It is a typedef to a meta-programming list.
  • call(T &function, QObject *receiver, void **args): A static function that will call the function, applying the given parameters.

Qt still supports C++98 compiler which means we unfortunately cannot require support for variadic templates.Therefore we had to specialize our trait function for each number of arguments.We have four kinds of specializationd: normal function pointer, pointer to member function,pointer to const member function and functors.For each kind, we need to specialize for each number of arguments. We support up to six arguments.We also made a specialization using variadic templateso we support arbitrary number of arguments if the compiler supports variadic templates.

The implementation of FunctionPointer lies inqobjectdefs_impl.h.

QObject::connect

The implementation relies on a lot of template code. I am not going to explain all of it.

Here is the code of the first new overload fromqobject.h:

You notice in the function signature that sender and receiverare not just QObject* as the documentation points out. They are pointers totypename FunctionPointer::Object instead.This uses SFINAEto make this overload only enabled for pointers to member functionsbecause the Object only exists in FunctionPointer ifthe type is a pointer to member function.

We then start with a bunch ofQ_STATIC_ASSERT.They should generate sensible compilation error messages when the user made a mistake.If the user did something wrong, it is important that he/she sees an error hereand not in the soup of template code in the _impl.h files.We want to hide the underlying implementation from the user who should not needto care about it.
That means that if you ever you see a confusing error in the implementation details,it should be considered as a bug that should be reported.

We then allocate a QSlotObject that is going to be passed to connectImpl().The QSlotObject is a wrapper around the slot that will help calling it. It alsoknows the type of the signal arguments so it can do the proper type conversion.
We use List_Left to only pass the same number as argument as the slot, which allows connectinga signal with many arguments to a slot with less arguments.

QObject::connectImpl is the private internal functionthat will perform the connection.It is similar to the original syntax, the difference is that instead of storing amethod index in the QObjectPrivate::Connection structure,we store a pointer to the QSlotObjectBase.

The reason why we pass &slot as a void** is only tobe able to compare it if the type is Qt::UniqueConnection.

We also pass the &signal as a void**.It is a pointer to the member function pointer. (Yes, a pointer to the pointer)

Signal Index

We need to make a relationship between the signal pointer and the signal index.
We use MOC for that. Yes, that means this new syntaxis still using the MOC and that there are no plans to get rid of it :-).

MOC will generate code in qt_static_metacallthat compares the parameter and returns the right index.connectImpl will call the qt_static_metacall function with thepointer to the function pointer.

Once we have the signal index, we can proceed like in the other syntax.

The QSlotObjectBase

QSlotObjectBase is the object passed to connectImplthat represents the slot.

Before showing the real code, this is what QObject::QSlotObjectBasewas in Qt5 alpha:

It is basically an interface that is meant to be re-implemented bytemplate classes implementing the call and comparison of thefunction pointers.

It is re-implemented by one of the QSlotObject, QStaticSlotObject orQFunctorSlotObject template class.

Fake Virtual Table

The problem with that is that each instantiation of those object would need to create a virtual table which contains not only pointer to virtual functionsbut also lot of information we do not need such asRTTI.That would result in lot of superfluous data and relocation in the binaries.

In order to avoid that, QSlotObjectBase was changed not to be a C++ polymorphic class.Virtual functions are emulated by hand.

The m_impl is a (normal) function pointer which performsthe three operations that were previously virtual functions. The 're-implementations'set it to their own implementation in the constructor.

Please do not go in your code and replace all your virtual functions by such ahack because you read here it was good.This is only done in this case because almost every call to connectwould generate a new different type (since the QSlotObject has template parameterswich depend on signature of the signal and the slot).

Protected, Public, or Private Signals.

Signals were protected in Qt4 and before. It was a design choice as signals should be emittedby the object when its change its state. They should not be emitted fromoutside the object and calling a signal on another object is almost always a bad idea.

Derived

However, with the new syntax, you need to be able take the addressof the signal from the point you make the connection.The compiler would only let you do that if you have access to that signal.Writing &Counter::valueChanged would generate a compiler errorif the signal was not public.

In Qt 5 we had to change signals from protected to public.This is unfortunate since this mean anyone can emit the signals.We found no way around it. We tried a trick with the emit keyword. We tried returning a special value.But nothing worked.I believe that the advantages of the new syntax overcome the problem that signals are now public.

Sometimes it is even desirable to have the signal private. This is the case for example inQAbstractItemModel, where otherwise, developers tend to emit signalfrom the derived class which is not what the API wants.There used to be a pre-processor trick that made signals privatebut it broke the new connection syntax.
A new hack has been introduced.QPrivateSignal is a dummy (empty) struct declared private in the Q_OBJECTmacro. It can be used as the last parameter of the signal. Because it is private, only the objecthas the right to construct it for calling the signal.MOC will ignore the QPrivateSignal last argument while generating signature information.See qabstractitemmodel.h for an example.

More Template Code

The rest of the code is inqobjectdefs_impl.h andqobject_impl.h.It is mostly standard dull template code.

I will not go into much more details in this article,but I will just go over few items that are worth mentioning.

Meta-Programming List

As pointed out earlier, FunctionPointer::Arguments is a listof the arguments. The code needs to operate on that list:iterate over each element, take only a part of it or select a given item.

That is why there isQtPrivate::List that can represent a list of types. Some helpers to operate on it areQtPrivate::List_Select andQtPrivate::List_Left, which give the N-th element in the list and a sub-list containingthe N first elements.

The implementation of List is different for compilers that support variadic templates and compilers that do not.

With variadic templates, it is atemplate<typename... T> struct List;. The list of arguments is just encapsulatedin the template parameters.
For example: the type of a list containing the arguments (int, QString, QObject*) would simply be:

Without variadic template, it is a LISP-style list: template<typename Head, typename Tail > struct List;where Tail can be either another List or void for the end of the list.
The same example as before would be:

ApplyReturnValue Trick

In the function FunctionPointer::call, the args[0] is meant to receive the return value of the slot.If the signal returns a value, it is a pointer to an object of the return type ofthe signal, else, it is 0.If the slot returns a value, we need to copy it in arg[0]. If it returns void, we do nothing.

The problem is that it is not syntaxically correct to use thereturn value of a function that returns void.Should I have duplicated the already huge amount of code duplication: once for the voidreturn type and the other for the non-void?No, thanks to the comma operator.

In C++ you can do something like that:

You could have replaced the comma by a semicolon and everything would have been fine.

Where it becomes interesting is when you call it with something that is not void:

There, the comma will actually call an operator that you even can overload.It is what we do inqobjectdefs_impl.h

ApplyReturnValue is just a wrapper around a void*. Then it can be usedin each helper. This is for example the case of a functor without arguments:

This code is inlined, so it will not cost anything at run-time.

Conclusion

This is it for this blog post. There is still a lot to talk about(I have not even mentioned QueuedConnection or thread safety yet), but I hope you found thisinterresting and that you learned here something that might help you as a programmer.

Update:The part 3 is available.